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Abstract 
Anomalous-scattering tensors for V measured with 
linearly polarized synchrotron radiation in 
VOSO4.5H20 near the K-absorption edge exhibit 
anisotropy as much as 4 units in f "  and +2 units in 
f ' .  This polarized dispersion causes the diffraction 
intensity to change when a crystal is turned around 
a diffraction vector and is the basis of a new way to 
obtain phases of structure factors. 

1. Introduction 

The method of isomorphous replacement (Cork, 
1927) has long been used to solve the structure-factor 
phase problem in Fourier analysis of crystal struc- 
tures. Its essence is to change the scattering factor at 
a site or sites in the unit cell by substitution of atoms. 
Sometimes such substitution is difficult to achieve 
and other methods are needed. A similar method is 
based on the dispersion of atomic scattering as 
the wavelength changes. This multiwavelength 
anomalous-dispersion (MAD) method also has a long 
history (Okaya & Pepinsky, 1956; Ramaseshan, Ven- 
kateshan & Mani, 1957) but was used infrequently 
until synchrotron radiation provided the wavelengths 
needed for best results (e.g. Guss, Merritt, Phizacker- 
Icy, Hedman, Murata, Hodgson & Freeman, 1988; 
Hendrickson, P/ihler, Smith, Satow, Merritt & 
Phizackerley, 1989). Another way to determine phases 
by modulation of the scattering at specific atomic 
sites was suggested by Templeton & Templeton 
(1985a) and here we demonstrate its use. This 'polar- 
ized dispersion method' depends on a change of 
atomic scattering factor for polarized X-rays as the 
crystal is turned in azimuth with the b vector as axis. 

The amplitude and phase of scattering of X-rays 
by atoms change abruptly with wavelength at the 
absorption edges, the photon energies just sufficient 
to excite specific inner electrons. For a long time the 
anomalous-scattering terms f '  and f "  which describe 
the real and imaginary parts of this dispersion of the 
complex scattering factor were assumed to be scalar 
properties independent of photon polarization. This 
assumption is invalid when the electrons are excited 
to states whose symmetries reflect anisotropic 
chemical structure and bonding. Then one needs 
anisotropic tensors to describe the variation of these 
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properties with polarization directions of incident 
and scattered beams (Templeton & Templeton, 1982; 
Dmitrienko, 1983). 

Fanchon & Hendrickson (1990) described in detail 
how one can take account of polarized dispersion in 
applications of the MAD method. While their main 
objective was to avoid errors caused by this birefrin- 
gence, they mentioned that it could be used to deter- 
mine phases with a single wavelength. Their exposi- 
tion allows us to simplify our discussion here. 

The vanadyl ion VO 2+ has a polarized pre-edge 
absorption line near the K edge (Templeton & 
Templeton, 1980). First we report measurements of 
the vanadium scattering tensor near this line by 
absorption spectroscopy and diffraction techniques 
using linearly polarized X-rays at the Stanford Syn- 
chrotron Radiation Laboratory. Then we describe 
how this polarized dispersion can be used to solve 
the structure-factor phase problem. 

Tachez, Throbald, Watson & Mercier (1979) 
refined the crystal structure of vanadyl sulfate pen- 
tahydrate with data measured using Mo Ka radiation. 
Crystal data are: monoclinic, P2~/c, a=6 .976(2 ) ,  
b =9.716 (5), c=  12.902 (4) A, fl = 110-90 (3)°, Z = 4. 
In this structure the directions of the V-O bonds of 
the vanadyl ions are 82.6 or 97-4 ° from b and their 
projections on the xz plane are within 0-3 ° of c*. 
A consequence is that the anisotropy of the macro- 
scopic X-ray tensor is nearly the same as that of the 
atomic tensor and two of its principal axes are close 
to a and c*. The third coincides with b by symmetry. 

2. Experimental 

Monoclinic crystals of VOSO4.5H20 were found in 
reagent 'vanadium sulfate' (Fairmount Chemical 
Co.). They gain or lose water in air of variable humid- 
ity, but are stable if glued to glass fibers and then 
dipped in fingernail polish which dries to form a thin 
protective coating. Enclosure in glass was avoided to 
simplify correction for absorption at the wavelengths 
near 2.27 A. An Enraf- Nonius CAD-4 diffractometer 
on Beam Line 1-5 at SSRL (Phillips, Cerino & 
Hodgson, 1979) was used in the ways described by 
Templeton & Templeton (1985a, 1988b) to measure 
absorption spectra and diffraction intensities. The 
fluorescence technique was used to measure the 
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absorption as a function of polarization direction for 
a rather angular crystal, about 0.21 × 0.24 x 0.36 mm 
in size. The energy resolution was about 0.3 eV with 
a pair of Si (220) crystals in the monochromator.  The 
horizontal polarization direction was set parallel to 
the reciprocal vectors 0, 0, 1 and 2, 0, -1  for the two 
spectra used to derive principal values of f "  and f ' .  

An Si (111) monochromator ( A E  ca 0-5eV) was 
used for diffraction experiments. A vanadyl sulfate 
pentahydrate crystal, about 0-36 x 0.41x 0.48 mm 
with rounded edges, was described by 19 faces for 
calculation of isotropic absorption by analytical 
integration. A further correction for the anisotropic 
absorption (dichroism) is described below. The 
energy scale was calibrated using 5463.9 eV (Bearden, 
1967) for the first inflection at the K edge measured 
by transmission with a metallic vanadium foil. The 
working standard during experiments was the peak 
of the pre-edge line of polycrystalline vanadyl sulfate; 
we measured it to be 5468.9 (2)eV on this scale. In 
our spectra its width (FWHM) was 2.2 eV, about 
twice the minimum set by our energy resolution and 
the 1.0 eV natural width of the K level (Krause & 
Oliver, 1979). The ratio of horizontal to vertical linear 
polarization of the beam was 31.1 (6) (93.8% polari- 
zation) according to a test with a germanium 
Borrmann-effect filter (Cole, Chambers & Wood, 
1971; Templeton & Templeton, 1988a). 

Integrated intensities were measured at various 
azimuthal angles and several wavelengths in the vicin- 
ity of the absorption line. One procedure was to 
measure each of many reflections at 0 = - 4 0 ,  0 and 
40 °. Another was to measure a few at many 0 settings. 
Data were adjusted for beam variation according to 
readings of an ion chamber filled with helium. In 
some sets there was a second adjustment according 
to repeated measurements of a standard reflection. 

3. Calculation of scattering factors 

To derive atomic scattering factors from our diffrac- 
tion data we need the parameters which describe the 
structure and its thermal motion. Tachez et al. (1979) 
did not include dispersion terms in their least-squares 
calculations. To avoid a bias from this omission, we 
recovered the structure factors from their Supplemen- 
tary Material and repeated the refinement using f '  
and f "  for V, S and O from Cromer & Liberman 
(1970). The most significant change in parameters for 
our purposes was an increase of 0.08 ~2 in each Bii 
of vanadium. The B values for hydrogen decreased 
0.8 ,~2 on the average and their positions shifted by 
as much as 0.1 ,~. Other changes were about one 
standard deviation or less and R =0.022 was the 
same. 

Dichroism modified the absorption factor in some 
of the experiments by as much as +22% during an 
azimuthal rotation and this variation tended to 

obscure the changes due to the birefringence of the 
scattering factor. We have not invented a practical 
way to make a rigorous correction for the combina- 
tions of polarization components with their various 
absorption parameters. However, since the incident 
radiation was highly polarized and most of the 
intensity was in the ss combination of scattering (the 
only one with a single absorption parameter), an 
approximate correction can be made if the other 
components are neglected. We assume that the 
absorption tensor of each vanadium atom is uniaxial 
with its axis parallel to the V-O bond direction. The 
macroscopic absorption parameter can be written as 

/x =/za(1 + Ks rMs) ,  (1) 

where s is the unit polarization vector, T indicates 
transpose and ~za is the average of an atomic tensor 
for all directions of polarization (cf. Appendix). For 
this crystal structure the matrix M is 

( - 0 - : 3 3 3  0 0-0054 / 
M = -0.3167 (2) 

\ 0.0054 0 0.6500] 

in a Cartesian system with axes parallel respectively 
with a, b and c*. The factor K varies with wavelength 
according to the sign and magnitude of the anisotropy 
and was adjusted by trial and error during the least- 
squares calculations. Rather than making repeated 
iterations of the laborious absorption correction with 
individual parameters for each reflection at each 
azimuth, we multiplied each intensity by a second 
absorption factor proportional to /z  from (1). This is 
a good approximation for a highly absorbing crystal 
like this one. 

A scale factor and the six independent elements of 
the f '  tensor for vanadium were adjusted by the 
method of least squares, holding constant the atomic 
coordinates and thermal parameters. This method 
uses the combined scattering power of sulfur, oxygen 
and hydrogen as the basis for the absolute scale. In 
another calculation the independent variables were 
the scale factor and the principal values o f f ' :  f "  for 
parallel and f "  for perpendicular polarization. The 
axis of the tensor was constrained to the direction of 
the V-O bond. No attempt was made to derive values 
o f f "  from these diffraction data because it has little 
effect on the intensity of scattering by this centrosym- 
metric crystal. The structure-factor calculations 
included ss and sp' terms but pp'  and ps were neglec- 
ted. The f "  contributions were included but their 
polarization anisotropy was neglected. 

The results listed in Table 1 were obtained using 
atomic parameters from our refinement of the data 
of Tachez et al. (1979). When their parameters were 
used, each f '  was more negative by about 0.08 units. 
The data measured at 5472-4eV were too few for 
valid determination of six components of the tensor. 
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Table 1. Tensor components for f '  o f  vanadium 

E(eV) 5462.5 5467.7 5470.5 5472.4 
~t t  -6 .71  (12) - 6 . 7  (4) -7 -5  (3) - 
f22 - 6 . 6 9  (13) - 7 - 5  (2) - 7 . 8  (1) - 
~ 3  - 7 . 1 2 ( 9 )  -9 -1  (I) -5.8 (I) - 
~2 - 0 . 0 4 ( 9 )  0-0(2) 0.0 (I) - 
f't3 0.03 (7) -0 .1  (2) -0 .1  (1) - 
~23 0 .06(9)  0 .4 (2 )  - 0 . 2 ( 1 )  - 
f "  -6 .71  (7) - 7 . 2 4  (15) -7 .71  (10) - 8 . 8  (4) 
f',, -7 .11  (8) - 9 . 0 7 ( 1 2 )  - 5 . 7 2 ( 9 )  - 7 . 0 ( 2 )  
~' -0.4(1) -1.8(2) 2.o(1) 1.8(5) 
R 0"052 0"069 0"057 0"042 
n* 324 233 257 56 

* N u m b e r  of  observations.  

The other three data sets yielded tensor components 
that are consistent, within the estimated errors, with 
uniaxial symmetry aligned with the V-O bond. In 
each case the two-component refinement gives a more 
precise estimate of the principal values. 

The fluorescence spectra were multiplied by I/A, 
then scaled and offset to connect with f "  values from 
the FPRIME program (Cromer, 1983) at a distance 
on either side of the edge. The resulting f "  data were 
transformed to f '  by Kramers-Kronig inversion using 
a difference method (Templeton & Templeton, 
1988b). A correction was made for the fact that the 
polarization directions in the experiments did not 
quite coincide with the atomic tensor axes by taking 
linear combinations of these curves. The resulting 
principal values o f f '  and f "  are shown as curves in 
Fig. 1. The differences from the uncorrected curves 
are almost invisible at this scale. Principal values of 
f '  from the diffraction experiments are shown as 
points; their error bars indicate standard deviations. 
Curves o f f ' +  if" in the complex plane (Fig. 2) show 
an extra loop for the (r values near the absorption 
line that is similar in size to that at the edge. 

6 

f., 4 

2 

0 

- 2  

- 4  

- 6  
f '  

- 8  

i 

5460 5470 5480 5490 

eV 

Fig. 1. Principal values off '  and f" tensors derived from absorp- 
tion data (curves) and diffraction data (points) as described in 
the text. Solid lines and circles for (r, broken lines and open 
circles for *r. 

4. Theory of phase determination 

We quote some algebra of the MAD method as a 
basis for the theory of the new method. For the case 
that one type of atom exhibits significant anomalous 
scattering, Karle (1989) gives several forms of the 
equations that relate the structure-factor magnitude 
[F~I of reflection h at wavelength A to the magnitudes 
and phase differences of contributions of different 
sets of atoms. His equation (21), with some change 
of notation, is 

IF ,12=xs+g ,x2+g2x6+g3xT.  (3) 
This equation is true for reflection - h  if the sign of 
g3 is changed. Functions which are independent of 
wavelength are 

n2 , , (==IF2I ,  (4) 

)5=1F712, (5) 

x6 = IFT I  IF~I cos A, (6)  

x7 = IF,IIFT.I sin A, (7) 

z~ = ,p;- ,p; ' .  (8) 

Here F~ is the structure factor for the set of atoms 
with anomalous scattering, but calculated without 
dispersion terms; F~' is similar but includes all atoms 
and ~ signifies phase. Coefficients which change with 
wavelength (and in our case with azimuth) are: 

gl = ( f , / fo )2  + (f, ,/fo)2, (9) 

g2 = 2 f ' / f  °, (10) 

g3 = 2 f " / f  ° (11) 

Observations of [FA[ at four wavelengths, or Bijvoet 
pairs at two wavelengths, are sufficient to determine 
the four X'S by solution of linear equations, leading 
to a unique solution for the three independent 
unknowns [F~'[, [F~'[ and A. With n different types of 
anomalous scatterers the equations are similar, but 

' , l 0 

2 - 4  - 2  0 

..-,.o-,,°.-.o....~ 

• ' . . ,  . . 
i 

- 1 0  -8  - 6  

4 f ' '  

Fig. 2. Plots off '+/f"  in the complex plane for 17 (solid curve) 
and ~r (broken curve) polarizations. Tie lines connect points for 
the photon energies of Fig. 3. 
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there are 2n + 1 independent unknowns and (n + 1) 2 
% functions. 

Some of the complications of multiple-valued 
structure factors for the general case of tensor scatter- 
ing are described elsewhere (Templeton & Temple- 
ton, 1982, 1988b; Fanchon & Hendrickson, 1990). 
Here we make some approximations which simplify 
the theory and its application. A more rigorous treat- 
ment, similar to that of Fanchon & Hendrickson 
(1990), is appropriate in the final stages of phase 
determination. The diffraction equations take a sim- 
pler form when (a) the radiation has complete linear 
polarization with electric vector perpendicular to the 
plane of scattering, (b) all anomalous atoms have 
tensors with the same magnitudes and orientation 
and (c) the sp' scattering factor can be neglected. 
Thon f '  and f "  are single valued at each azimuth and 
(3) to (11) can be used without any change. The only 
difference from the MAD method is that azimuthal 
angle takes the place of wavelength. It makes sense 
to combine the two methods and change both 
wavelength and azimuth. It is shown below that this 
procedure can reverse some of the polarization effects 
and help separate them from experimental errors. 

To test the phasing method with centrosymmetric 
vanadyl sulfate hydrate we neglected imaginary terms 
and assigned to each vanadium atom the same tensor 
with unique direction parallel with c*. Neither 
approximation introduces much error. Then the 
atomic scattering factor for vanadium is 

f ( O ) = s r f s = f ° + f ' + 6  ' cos2 c~, (12) 

where ~ is the aximuthal angle, a is the angle between 
s and c*, and 6' = f ' - f ' .  For reflections with h ± c*, 
a changes at the same rate as @ and the method 
works best. As h approaches e* the range of a is less, 
the modulation of f(@) diminishes and finally the 
method fails. With neglect of imaginary terms, one 
can write the total structure factor at wavelength h 
and angle ~ as 

F~,o,= F'~ + F ~ [ f ( O ) - f ° ] / f  °. (13) 

From (12) and (13) one gets 

Fx~,=FT+F~(g4+gscos2a),  (14) 

g 4 = f ' / f  °, (15) 

g s = 8 ' / f  °. (16) 

In (14), Fa, is a linear function of COS 2 t~ with slope 
gsF~ and intercept F'~+g4F'~. Let S and Y be the 
slope and intercept of a plot of [FA~,[ vs cos 2 a. Then 
the equations 

F'~= S/gs ,  (17) 
n F, = Y -  Sg,/ gs, (18) 

give F~' and F~' with signs consistent with positive 
F~, and thus their sign relation to each other is 

determined. When S has the same sign as 8', F~ has 
the same sign as Fx,. 

For noncentrosymmetric crystals the imaginary 
terms are necessary and (14) is not valid but another 
approximate formula may be useful. If the tensor is 
uniaxial, the atomic scattering factor (for ss scatter- 
ing) is 

f ( g/) = f °  + f "  + if~ + r cos2 a, (19) 

8 = f ' - f ' + i ( f ~ - f ~ ) = [ 8 [ e x p ( i e ) .  (20) 

Here e is the phase of 8 in the complex plane. The 
dispersion effects in F consist of terms proportional 
t o f ' , f ~  and [8[ with phases --A, r r / 2 -  A and e- -A 
relative to F~'. If dispersion effects are small relative 
to the total structure factor, the projection of F~,~, on 
F~' is a good approximation of [F**[" 

[Fa4, [ -'-[F~'[ + [V~l[g4 cos A + g6 sin `4 

+g7 COS (,4 -- e) COS 2 a] ,  (21) 

g 6 = f ~ / f  °, (22) 

g7----lgl/f °. (23) 

Again is a linear function of cos 2 a, but now its 
slope is g7[F2[ cos (A - e). The sign of the slope limits 
,4 to a semicircle and this slope is steepest when A = e 
or A----zr + e. The corresponding slope for a Bijvoet 
mate is g7[F~'[ cos (`4 + e) and steepest slopes occur 
when `4 = - e  or `4 = ~- -e .  As the wavelength is 
changed through a polarized resonance, the real part 
of fi changes sign and e covers a wide range of angles. 
Thus a combination of observations of a Bijvoet pair 
at several wavelengths has diverse opportunities for 
phase indications regardless of the value of ,4. 

5. Experimental phase determination 

Plots in Fig. 3 of [FA,[ 2 vs ¢/ for photon energies on 
either side of the absorption line are examples of 
strong anisotropy of scattering. These data have been 
corrected for absorption as described above. The tie 
lines shown in Fig. 2 show how f changes in the 
complex plane as the crystal is turned; the real com- 
ponent of the change is what is effective here. The 
reversal of the anisotropy when h is changed is 
evidence that it arises from the sign change of 8' 
rather than from an error in the absorption factor; 
the latter is nearly the same at both wavelengths. The 
plots of [F~,[ vs cos 2 a (Fig. 4) are linear in agreement 
with (14). We attribute the scatter of the points mainly 
to instability in h to which 8' is very sensitive. For 
420 the slopes of the two lines have the same signs 
as 8'; thus F~ has the same sign as F~, and (18) 
yields +31 and +36 for F~'. The value calculated from 
the known structure is +32. For 430, the reversal of 
slopes for the two photon energies shows that F~ and 
F~, have opposite signs. The second term in (18) is 
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larger than the first and F~' = -11 and - 6  relative to 
positive Fa~, and negative F~. The correct value is 
-10.  

The effects of anisotropic absorption are compar- 
able to those caused by 8' and the absorption correc- 
tion was essential for agreement with theory. 
Nevertheless, these phase results were evident when 
the raw data for the two wavelengths were compared. 

One does not need so many data for this method 
to work. Two or three points at the right azimuths 
are enough. In the larger data sets with three azimuths 
per reflection, many correct relative signs could be 
recognized. The difference of slopes at the two 
wavelengths is a more reliable signal than is a single 
slope because of cancellation of some of the errors. 

6. Discussion 

The f '  values measured by the two techniques are in 
good agreement except that less anisotropy is 
observed in the diffraction experiments, probably 
because of the larger AE of the  (111) monochromator.  
This anisotropy is sufficient to cause drastic effects 

on diffraction intensities, yet it is not unusually large. 
Similar magnitudes of 8' were found in UO22+ and 
two to three times larger ones in BrO3, PtCI~- and 
Se bonded to C (Templeton & Templeton, 1982, 
1985a, b, 1988b). 

Rigorous correction for absorption remains an 
unsolved problem for dichroic crystals. The strategy 
that succeeded here, to use the absorption parameter 
for the largest component,  is a first-order approxi- 
mation which may be useful elsewhere. 

That phase information is contained in the effects 
of polarized dispersion has already been demon- 
strated by experiments with forbidden reflections 
(Templeton & Templeton, 1987). The method 
described here is much more general. That the polar- 
ized-dispersion method can solve the phase problem 
with a single wavelength is shown here for a simple 
centrosymmetric case. In principle, with Bijvoet pairs, 
it can do the same for noncentrosymmetric crystals. 
It is more powerful if more than one wavelength is 
used and then it is an extension of the MAD method. 
In that mode it may give access to greater variety of 
values of f in the complex plane, may have some 
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advantages for design of experiments and may give 
some cancellation of experimental errors. Advan- 
tageous or not, the effects of anisotropy need attention 
when the MAD method is used with any crystal which 
exhibits X-ray dichroism. 

To use the method one must somehow find the 
orientations of the atomic tensors. Absorption spec- 
troscopy gives that tensor directly if there is only one 
orientation. Otherwise it gives a macroscopic tensor 
which is an average of atomic tensors. To find the 
atomic tensors then may be easy, difficult or impos- 
sible, depending on how many there are and what 
help is given by symmetry, by knowledge from other 
crystals, or from a partial solution of the structure in 
another way. 

Here we have shown that polarized dispersion by 
itself can determine phases in simple cases. Perhaps 
more important is the implication that this phase 
information can enhance the power of the MAD 
method. 
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APPENDIX 
Anisotropy matrix and macroscopic absorption tensor 

The uniaxial atomic absorption tensor in a Cartesian 
system with z along the unique axis is 

Ix, = /z~ . (24) 

0 

If expressed in terms of the average [2, a = (2jIZ~. -~- ~£tr)/3 
and the anisotropy ~, = / z ~ -  ~,~ this becomes 

Ixi = ~ I  + 6~,Mi, (25) 

where I is the identity matrix and Mi is the atomic 
anisotropy matrix (_,,30 00) 

M, = 0 - 1 / 3  . (26) 

0 0 2/3 

The scalar tzi for polarization e is 

/x~ = erix~e =/xo + 3,,eTMie. (27) 

Let (u, v, w) be a unit vector defining the unique axis 
of M~ in a second Cartesian system. It can be shown 
by the rules for rotation of vectors and tensors that 
M~ in this system is 

\1U2--1/3 UV UW ) 
Mi = | uv v 2 -  1/3 vw . (28) 

uw vw w 2-  1/3 

In monoclinic crystals for each atom with axis 
vector (u, v, w) there is a symmetry-related atom with 
vector ( u , - v ,  w). The average anisotropy matrix, 
which corresponds to the macroscopic absorption, is ( , , 3 0 0  / 

M = 0 v 2 -  1/3 . (29) 

uw 0 w 2 -  1/3,] 

In VOSO4.5H20 the V-O(1) bond vector r is (0.0872, 
-0.0210, 0.1303) in unit-cell coordinates. The trans- 
formation 

(i) ,(i 0 0 
=~ 0 c s i n f l / \ z /  

(30) 

gives (u, v, w)= (0.0054, -0.1288, 0.9917). Substitu- 
tion in (29) gives (2). 

Another form of (28) is valid for biaxial tensors. 
The elements of Mi are 

3 
mjk • E enUnjUnk (31) 

n=l 

if tzl,/z2,/z3 are the principal values in monotonic 
order of magnitude,/xa is their average, (u, ~, un2, u,3) 
is the unit vector for the direction of/x,, 3~ = (/x3 - /x l )  
and e ,=( /x , -p .a) /~5, .  This definition is identical 
with (28) if ~ = ~2. 
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Abstract 

Deformation and valence electron densities in 
diamond are derived via Fourier summation and 
pseudoatom multipole refinement of the recently 
reported structure factors derived from X-ray 
PendellSsung beats [Takama, Tsuchiya, Kobayashi & 
Sato (1990). Acta Cryst. A46, 514-517]. The results 
are significantly different from those reported pre- 
viously and are generally in excellent agreement with 
theoretical calculations. 

Introduction 

Because of its simple structure, high symmetry and 
low thermal motion, diamond occupies a unique posi- 
tion in the history of electron-density studies. The 
electron distribution in diamond was first examined 
by X-ray diffraction by Brill, Grimm, Hermann & 
Peters (1939) in an attempt to compare the covalent 
bonding in diamond with the ionic bonding in NaC1. 
The data set collected by those authors was sub- 
sequently analysed by Brill (1950, 1959, 1960) and 
Carpenter (1960). A more accurate, absolutely scaled, 
data set was later obtained from a powder sample by 
GSttlicher & WSlfel (1959; referred to as GW), and 
it is this data set which has since been analysed by 
many workers (Weiss, 1964, 1966; Dawson, 1967, 
1975; Dawson & Sanger, 1967; Kurki-Suonio & 
Ruuskanen, 1971; McConnell & Sanger, 1970; 
Stewart, 1973a, c; Harel, Hecht & Hirshfeld, 1975; 
Price & Maslen, 1978) usually supplemented by the 
value of the 'forbidden' 222 reflection measured by 

Renninger (1937, 1955) or Weiss & Middleton (1965; 
see Dawson, 1967). 

In this work we take advantage of the recent 
measurement of nine low-order structure factors 
using the PendellSsung beat method (Takama, 
Tsuchiya, Kobayashi & Sato, 1990; referred to as 
TTKS). These data are significantly different from 
those reported by GW, and a preliminary electron- 
density analysis performed by TTKS suggests that the 
resulting electron distribution is also somewhat 
different from those obtained previously. The new 
data, in conjunction with an independently measured 
value for the 222 reflection, deserve a careful critical 
analysis in the manner we have previously performed 
on silicon (Spackman, 1986) and germanium (Brown 
& Spackman, 1990). In this way we hope to ascertain 
the degree of current accord (or otherwise) between 
experiment and theory for this important archetype 
of covalent bonding and, with reference to the similar 
studies on silicon and germanium, explore the nature 
of any trends which may be revealed as we descend 
this column of the Periodic Table. 

We analyse the recent PendellSsung data of TTKS 
combined with a measurement of the 222 reflection, 
pursuing both Fourier methods and a rigid 
pseudoatom model (Stewart, 1973b, 1976). Where 
possible, standard deviations (e.s.d.'s) in the results 
are determined from the estimated errors in the 
experimental observations and the curvature of the 
least-squares-error surface at the minimum. The struc- 
ture of the present paper parallels the earlier study 
on silicon. In the following section we discuss details 
of the data set chosen for the study, then describe 
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